
TaskManager notes

Classes That Reference TaskManager
Class Package Notes

AbortJob com.sun.jini.mahalo Subclass of Job. Passed a TaskManager as
parameter. Uses ParticipantTask, no
dependencies.

CommitJob com.sun.jini.mahalo Subclass of Job. Passed a TaskManager as
parameter. Uses ParticipantTask, no
dependencies.

EventType com.sun.jini.norm.event Task type SendTask, subclass of RetryTask, no
dependencies.

EventTypeGenerator com.sun.jini.norm.event Supplies a TaskManager for use by the EventType
objects it generates.

FiddlerImpl com.sun.jini.fiddler Extensive use of TaskManager, with many
different Task subtypes. No dependencies.

Job com.sun.jini.mahalo Manage performance of a job as a set of tasks all
of which need to be created by the Job subclass.
There is some dubious code in performWork that
silently throws away an exception that would
indicate internal inconsistency.

JoinManager net.jini.lookup Uses ProxyRegTask, which extends RetryTask.
Special problem - making sure a service gets
exactly one ID. If the ID has already been
allocated, no dependencies. If not, runAfter any
ProxyRegTask with lower sequence number,
ensuring that only the lowest sequence number
ProxyRegTask in the TaskManager can run. Safe
if, and only if, tasks are submitted in sequence
number order.

LeaseRenewalManager net.jini.lease Uses QueuerTask and RenewTask. No
dependencies.

LookupDiscovery net.jini.discovery Uses DecodeAnnouncementTask and
UnicastDiscoveryTask. No dependencies.

LookupLocatorDiscovery net.jini.discovery Uses DiscoveryTask. No dependencies.

MailboxImpl com.sun.jini.mercury Uses a NotifyTask, subclass of RetryTask, no
dependencies.

Notifier com.sun.jini.outrigger Uses its own NotifyTask, subclass of RetryTask.
Dependency based on EventSender runAfter test.
EventSender has two implementations. An
EventRegistrationWatcher.BasicEventSender
waits for any BasicEventSender belonging to the
same EventRegistrationWatcher.
VisibilityEventSender has no dependencies.

ParticipantTask com.sun.jini.mahalo No dependencies.

PrepareAndCommitJob com.sun.jini.mahalo Subclass of Job. Passed a TaskManager as
parameter. Uses ParticipantTask, no
dependencies.

PrepareJob com.sun.jini.mahalo Subclass of Job. Passed a TaskManager as
parameter. Uses ParticipantTask, no
dependencies.

RegistrarImpl com.sun.jini.reggie Uses multiple Task types: AddressTask - no
dependencies; DecodeRequestTask - no
dependencies; EventTask - run after EventTask
for same listener, "Keep events going to the
same listener ordered"; SocketTask - no
dependencies.

RetryTask com.sun.jini.thread Abstract class implementing Task. It provides for
automatic retry of failed attempts, where an
attempt is a call to tryOnce.

ServiceDiscoveryManager net.jini.lookup Uses CacheTask - no dependencies; ServiceIdTask
- run after ServiceIdTask with same ServiceId and
lower sequence number. Its subclasses
NewOldServiceTask and UnmapProxyTask inherit
runAfter. ServiceIdTask's subclass
NotifyEventTask runs after RegisterListenerTask
or LookupTask with same ProxyReg and lower
sequence, and also calls the ServiceId runAfter.
Bug ID 6291851. Comment suggests the writer
thought it was necessary to do a sequence
number check to find the queue order: " and if
those tasks were queued prior to this task (have
lower sequence numbers)".

SettlerTask com.sun.jini.mahalo Subclass of RetryTask. No dependencies. Used in
TxnManagerImpl.

TxnManagerImpl com.sun.jini.mahalo Uses SettlerTask and ParticipantTask. No
dependencies.

TxnManagerTransaction com.sun.jini.mahalo Creates a TaskManager, threadpool, and passes
it around to e.g. Job and AbortJob.

TxnMonitor com.sun.jini.outrigger Uses TxnMonitorTask.

TxnMonitorTask com.sun.jini.outrigger Subclass of RetryTask. No dependencies.

Issues

RetryTask
RetryTask is a Task implementation whose run method tries a subclass supplied method with a boolean

result. If the method returns false, indicating failure, the RetryTask's run method schedules another try

in the future, using a WakeupManager supplied to the RetryTask constructor.

During the time between a failed attempt and its retry, there does not seem to be any control to

prevent conflicting tasks from entering the same TaskManager. Some of those tasks would have waited

for the task being retried, if it had been in the TaskManager at their time of arrival. Delayed retry and

dependence on sequence number seem incompatible. Notifier.NotifyTask and

JoinManager.ProxyRegTask both extend RetryTask and have dependencies. JoinManager.ProxyRegTask

uses a sequence number, but problem does not need to, and should not. The intent seems to be to run

tasks for a given service one-at-a-time until its ServiceId has been set.

ServiceDiscoveryManager.CacheTask
Most subclasses inherit a "return false;" runAfter. The exceptions are ServiceIdTask, its subclasses, and

LookupTask. Both have sequence number dependencies. It is not yet clear whether

ServiceDiscoveryManager is ensuring that tasks enter the TaskManager in sequence number order. If it

does, the code is correct, but wastes time with a trivially true check. If not, the code is incorrect relative

to the comments, which seem to expect order.

